
I have recently been providing advice to Mark Herse, a PhD student at the University of Canterbury, on statistical issues relating to population modelling of black swans.
Statistical Modelling and Study Design
I have recently been providing advice to Mark Herse, a PhD student at the University of Canterbury, on statistical issues relating to population modelling of black swans.
I am looking forward to collaborating with Darryl MacKenzie and Stefan Meyer of Proteus Wildlife Research Consultants early next year on a project funded by the New Zealand Ministry of Primary Industries looking at the risk from fisheries bycatch to marine mammal species.
I am delighted to be working with James Reardon from the NZ Department of Conservation on a project concerned with sustainable mouse control. It will be good to get into the design and statistical modelling issues in this study.
I recently provided advice on the use of “single-fit” bootstrapping to obtain confidence intervals for indices of relative abundance, when fitting a delta-lognormal model to fisheries data. The key idea is that of resampling the model parameters from a multivariate normal distribution. This is computationally nice as it allows a parametric bootstrap confidence interval to be calculated without refitting the model. You can find more details about “single-fit” bootstrapping in these seminar slides.
I have recently been providing advice to STIMBR (Stakeholders in Methyl Bromide Reduction) on the estimation of percentiles when modelling the dispersion of chemicals in the atmosphere. It was interesting to see just how unreliably the highest upper percentiles of a skewed distribution are estimated, even from a very large sample. This has implications for the use of such percentiles in setting environmental health regulations.
I am currently working with David Bryant at Otago University on testing lack-of-fit of a model in phylogenetics.
It’s great to be able to use my research experience in estimating overdispersion on an important scientific problem. One of the key aspects of the problem is the sparseness in the data, which are multinomial with a very large number of categories.
Joint work with Farzana Afroz and Matt Parry will be particularly useful in this setting, as we were able to derive an estimate of overdispersion that works really well for sparse multinomial data: the paper we published can be found here.
It’s been great to have these two papers come out in the last couple of weeks:
Model-averaged confidence distributions: https://link.springer.com/article/10.1007/s10651-019-00432-5
Estimating overdispersion in sparse multinomial data:
https://onlinelibrary.wiley.com/doi/10.1111/biom.13194